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Abstract

This study explored data analytic approaches to assessing
young children’s engagement in robot-mediated collabora-
tive interaction. To develop our analytic models, we took a
case-study approach and looked closely into four children’s
behaviors during three conversational sessions. Grounded in
engagement theory, three sources of multimodal behavioral
data (utterances, kinesics, and vocie) were coded through
human annotation and automatic speech recognition and
analysis. Then, information-theoretic methods were used to
uncover nonlinear dependencies (called mutual information)
among the multimodal behaviors of each child. From this,
we derived a model to compute a compound variable of en-
gagement. This computation produced engagement trends
of each child, the engagement relationship between two chil-
dren in a pair, and the engagement relationship with the
robot over time. The computed trends corresponded well
with the data from human observations. This approach has
implications for quantifying engagement from rich and nat-
ural multimodal behaviors.
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1 INTRODUCTION

In recent years, embodied humanoid robots are increas-
ingly experimented in various walks of life from health
through retail business to education. This new generation
of service robots are distinguished from more conventional
industrial and manufacturing robotic systems. The robots are
designed as partners or companions of humans sharing ev-
eryday life space [1] and perceived by their human partners
as lifelike having social and relational capacities [2].

In education, social robots are designed as assistive tools
to interact and collaborate with students and teachers. While
working with the robots, these users seem to develop in-
terpersonal and affective relationships with their robots [3].
Research and development in the educational use of social
robots have been prolific for a range of learner populations
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from young children to older people in the last decade. A
recent review has identified language learning, social skill de-
velopment, and robotics education as most popular domains
of educational robotic applications [4]. Initial evidence of
such applications has been quite promising especially in
learners’ engagement in robot-assisted tasks.
This study examined if a social robot could help develop

collaboration skills of young childrenwho just started school-
ing. Being able to collaborate with peers are deemed as foun-
dational for both social and intellectual development of chil-
dren, leading to short and long-term academic success. We
instantiated an interaction triad of a robot and two children,
where the children engaged in conversations and co-creation
of digital artifacts on a shared tablet to solve problems (Fig-
ure 1). In this process, the robot prompted the children to the
task, soliciting collaborative behaviors, such as turn-taking,
shared decision-making, negotiating, and reaching agree-
ment.

Figure 1: A Robot-Mediated Collaboration Triad

A significant challenge we faced was the valid and reliable
evaluation of the interaction triad in terms of children’s
engagement in collaborative interaction. Young children’s
interactions with each other and with the robot were richly
multimodal in nature. In line with some previous work in
the LAK community (e.g., [5], [6]), the authors found that
conventional psychological measures seemed very limited
in capturing such rich behaviors of children.
Alternatively, we explored a multimodal data analytics

(MDA) approach where we used both manual and computa-
tional coding and processing to assess children’s engagement
in triadic collaboration. Acknowledging MDA is in its infant
stage, we had four preliminary research questions to guide
our analytic processes: i) In what way does a child’s engage-
ment in the collaborative task progress over time? ii) To what
degree do three types of multimodal data (utterances, kinetic,
and vocal cues) conform with each other for the child? iii) To
what degree does the robot’s mediation relate to the child’s

engagement? iv) To what degree does the engagement relation-
ship of two children in a pair evolve over time?

2 BACKGROUND

2.1 Learner Engagement

The study of engagement is increasingly becoming a focal
issue in education research because of its observed correla-
tions with learning outcomes and potential predictability of
the outcomes [7]. Broadly defined, engagement refers to a
student’s participation in the learning process, and is consid-
ered an expression of internal states, such as commitment,
motivation, or interest [8]. It is a multi-faceted phenom-
enon that is distinguished into cognitive, behavioral, and
emotional engagement, each of which is identified through
specific behavioral indicators [9]. Cognitive engagement, for
example, is identified through students’ ongoing effort on
task and task performance, behavioral engagement through
bodily actions, and emotional engagement through students’
positive and negative emotional states during a lesson or
class [10].

Nonetheless, these aspects of engagement are often stud-
ied in isolation, and holistic accounts of engagement are rare.
In fact, learners’ internal states can be expressed in several
different behavioral forms (e.g., talk, emotion, action). Like-
wise, learners’ engagement in collaboration can be identified
through their talks, emotions, posture, and gestures. Each of
these can be an indicator of collaborative engagement.
Another shortcoming of the research on engagement to

date relates to capturing variations of engagement over a pe-
riod of interest, such as a lesson or task. Engagement can vary
highly within even short sessions as learners react quickly
to changes in their environment (e.g., changes in materials
or in social relations). This seems to be the case particularly
for young children who are receptive even to minute stimuli.
In our study, we also have noticed that children’s collabo-
rative behaviors developed gradually over time. A classical
pre/posttest approach in a controlled setting would not pro-
vide an authentic assessment of collaborative engagement.
Rather, it must be assessed as development in progress [11].
Further, young children’s language and literacy compe-

tencies are still developing with substantial individual dif-
ferences in their development. Frequently used methods,
such as self-report surveys and interviews, are less likely to
provide valid and reliable measures of engagement.
There is a great need to study engagement through non-

intrusive methods as it is demonstrated in various behaviors
and as it changes over time. This is especially important
for technology-rich environments which present learners
new learning material and artifacts to which learners react
quickly [12].
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In this study, grounded in the literature on engagement
[10], we collected three sources of multimodal behavior of
children while they participated in the robotic triad. First
we recorded the utterances (i.e., linguistic alignment) of the
children and the robot as an indicator of cognitive engage-
ment. Next we captured kinetic behaviors (i.e., gaze, posture,
and movement) as an indicator of behavioral engagement.
Lastly, we recorded children’s voices (vocal acoustics) as an
indicator of emotional engagement. We analyzed these data
sets using both manual annotations and computational tech-
niques, such as speech recognition and signal processing and
information theoretic measures.
2.2 Acoustic Signal Processing and Analysis

Over the decades, researchers in psychology and com-
puter science examined vocal behavior (e.g., acoustics) to
assess emotional states of interlocutors in social interaction
[13, 14]. In this study, we used this emotional vocalization of
children as a marker for emotional engagement. Automatic
speech recognition (ASR) technology has been widely used
in many areas in recent years, such as industry, communi-
cation, consumer electronic products, and in medical care
[15]. Speech recognition is a procedure of signal processing,
changing speech signal waveform in the spatial domain into
a series of coefficients which can be recognized or under-
stood by machine. There are four primary auditory features
associated with sound: Intensity (loudness), pitch, timbre,
and the source of the sound [16]. Intensity (loudness) is a
quantitative measure of the amplitude of the sound com-
pared to a reference level. Pitch is a quantitative measure of
the actual fundamental frequency of a sound. Timbre is a
qualitative measure of a sound that can differentiate between
two sounds of equal loudness and pitch through the tonal
quality of the sound. The source of the sound has some effect
on the perception of the three other features.
Essentially whenever a sound is heard, our brain will ac-

tively consider those four analog auditory qualities and make
a decision regarding it. We use similar techniques in ASR to
analyze children’s audio signal in three steps.
(1) Speech signal detection: Short-time energy is used

to detect speech segment and silent segments, which
will be used for pattern extraction later. Signal detec-
tion processes instances of voiced activity without
wasting computational time during silent periods. To
accurately detect voiced activity, short-term energy,
short-term magnitude and short-term zero-crossing
are the general methods one can use [15].

(2) Feature extraction: Commonly used features in the
ASR community (e.g., LPC, MFCC) are not designed
for measuring emotional states. In the current study,
we used the intensity and pitch as features. In our
previous work for infant cry signal classification, we

have found that the abnormal cry occurring when the
infant was in great pain had much higher intensity
and pitch compared to the ordinary cries occurring
when the infant was hungry or its diaper needed to be
changed [17, 18].

(3) Feature analysis: We used short-time energy for each
segment for intensity, so we can track the time-varying
characteristics of the speech signal and compare them
with the engagement levels. For pitch, we analyzed the
power of the signal in terms of each frequency compo-
nent, so we can connect the power spectrum density
of each segment with the speaker’s engagement.

2.3 Information Theoretic Measures of Mutual
Information

Methods in time-series analysis that capture agreement
(synchrony) between two time series differ in the assump-
tions about the expected mathematical relationship. Pearson
correlation, for example, assumes a linear relationship. It
also assumes homoscedasticity, meaning that the data from
multiple sources vary within the same range [19]. Such meth-
ods are also ill-equipped to study temporal correlations of a
data set that draws on measurements obtained using varying
sampling rates.

Nonlinear correlation methods overcome these limitations
by capturing the statistical similarities between pairs of time
series [20]. Among these, the information theoretic measure
of mutual information captures the dependence between two
time series in terms of the information they share, without
assuming linear relationship between the time series. Mutual
information has been used in a wide variety of fields ranging
from the cognitive sciences to highlight the role of executive
functions [21], to the neurosciences to measure connections
between behavior and stimuli [22], to weather forecasting
for making weather predictions [23].

In this study, we represent a behavior (e.g. voice, kinesics,
and linguistic alignment) as a randomvariableX . The amount
of information, or uncertainty, contained within the random
variable is defined as entropy H (X ) = −

∑
i pi logpi where

pi denotes the probability of the variable taking a discrete
value i among all the possible values that X can take [24].
Mutual information, captures the amount of information
shared by two random variables X and Y , and is defined
as I (X ,Y ) = H (X ) + H (Y ) − H (X ,Y ), where H (X ,Y ) is the
joint entropy between X and Y [24]. A high mutual infor-
mation implies more agreement (dependence) between two
variables, whereas a mutual information of 0 implies com-
plete independence. Mutual information is symmetric so that
I (X ,Y ) = I (Y ,X ).

Estimating mutual information depends on the reliability
of the estimate of the entropy of each process. Since entropy
is a probabilistic representation of a process, sufficient data
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are required to guarantee reliability of an estimate [25]. If not
enough data are available, permutation entropy provides an
alternate representation of the data [26]. In this representa-
tion, a time series is mapped to a unique sequence of symbols
of length m in terms of the order in which the data appear.
For example, withm = 2, a time series of 0s and 1s can be
rewritten in terms of (0, 0), (0, 1), (1, 0), (1, 1). If we denote
each of these pairs of values with a new sequence, so that
(0, 0) = 1, (0, 1) = 2, and so on, X (t) = {1, 0, 0, 1, 1, 0} can be
rewritten as X̂ (t) = {3, 1, 2, 4, 3}. This form allows us to write
a binary time series with higher resolution while capturing
transitions in behavior. The value of symbol length m is a
design parameter that must be selected to satisfy robustness
in results. We use mutual information to first quantify the
temporal agreement between each of the three multimodal
datasets, and then to capture how interaction with the robot
and between children varies throughout multiple sessions.

3 METHODS

3.1 Robot-Mediated Collaboration Context

For the collaborative triad, we designed the robot Skusie
as a new friend from another planet who liked to learn about
life on earth. It asked children to work together to help him
learn about animals, birthdays, school, and family. Each of
these topics was covered in a series of two sessions (con-
versational and tablet-based digital making as in Figure 2),
each session taking fifteen to twenty minutes. These triadic
interaction sessions were implemented naturally in a school
library during the regular school hours. Children participated
in a total of six sessions (three conversation sessions and
three tablet sessions) on a daily basis over two weeks exclud-
ing school events days. For Skusie’s behavior, we adopted a
wizard-of-oz method, where a researcher controlled Skusie
remotely hidden behind the scene.
The sessions were recorded in real time using two HD

video cameras located on the right and left sides in front
of the children. Two directional microphones (AT897) were
located on each side of the children to capture a child’s speech
separately. Also, since the interaction sessions were run in
a natural setting, there were constant noises surrounding
the setting while children talked to each other and with the
robot. We placed two ambient microphones (Shure SM94) at
two corners of the walls (one in front and the other behind
the children) to capture the background noises. Lastly, two
researchers took descriptive observation notes.
3.2 Participants and Data Selection

A total of eighty English-speaking children (aged five to
six) participated in the robotic sessions. We paired two chil-
dren to form a robotic triad in consideration of mixed gender
and mixed ethnicity, also avoiding extant close friendships.

(a) (b)

Figure 2: Sample Sessions for Conversational (a) and Tablet-
Based Digital Making (b)

For this phase of model development, we randomly selected
two triads based on the quality of audio data. Per triad, we
had a total of 100 to 120-minute-long audio and video data.
Vocal cues were processed and analyzed at a 3 second inter-
val by ASR; matching video data was annotated manually to
code for kinesics and linguistic alignment (see Section 3.4
for more information).
3.3 Automatic Extraction of Acoustic Pitch and

Intensity of Children

We extracted acoustic pitch and intensity of children from
audio streams using short time processing technique. In order
to obtain the intensity information, we calculated the short-
time energy (STE) defined as the average of the square of the
sample values in a suitable window. It can be mathematically
described as follows [27].

E(n) =
1
N

N−1∑
m=0

[W (m)x(n −m)2] (1)

where w(m) are the coefficients of a suitable window func-
tion of length N. The Hamming window has been chosen
as it minimizes the maximum side lobe in the frequency
domain. The intensity of a speech signal is related to the
speaker’s condition, the microphone and its placement, the
pre-amplifier and the recorder as well. We calculate the in-
tensity level based on a threshold which can avoid the effects
from the hardware setup and placement. Then the intensity
level is defined by comparing it with the threshold t .

intensity =

{
1 (high) if E(n) > t,

0 (low) if E(n) < t .
(2)

where the threshold t can be obtained by evaluating all the
speech segments in the audio data file, meaning that we
select all speech segments from the recorded file, ignoring
the silent ones, and then calculate the average energy of all
the samples in these speech segments. t = 1

L
∑L

i=1[x(i)
2]with

xi (n) is the nth samples in ith speech segments. Figures 3 and
4 show the waveforms and short time energy of different
speech segments. Figure 3 shows one segment with high
intensity and Figure 4 shows a low intensity segment.
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Figure 3: The Segment with High Intensity

Figure 4: The Segment with Low Intensity

For pitch, we used time frequency analysis to analyze
the kindergartners’ speech signals. It is well known that
Discrete Fourier Transform (DFT) of a long sequence is an
estimate of the power spectrum density (PSD), also called
periodogram [16]. Different speech signals from different
children would produce similar gross PSD. Therefore, we
use short-time Fourier Transform (STFT) to obtain the time-
varying properties of speech signals. STFT is defined as

Xn(e
jw ) =

∞∑
m=−∞

x(m)w(n −m)e−jwn (3)

Fourier transform (FT) of the sequence of input signal is
convolved with the FT of the shifted window. To represent
X (e jw ) by using STFTXn(e

jw ), we choose a window function
with spectral highly concentrate around origin. In this pa-
per, the Hamming window was used to conduct STFT. Once
Xn(e

jw ) was obtained, we compared it with pitch threshold.
If the majority of power was in the low frequency band (<440

Hz), we defined it as low pitch (coded as 0), otherwise, we
defined it as high pitch (coded as 1). The threshold value of
440 Hz was set referring to literature [28] and also consulting
disciplinary experts.

Figure 5: The Segment with High Pitch Component

In Figure 5, we can find that the speech segment has fre-
quency components from 100Hz to 1000Hz, the high pitch
parts are shown in red color. Figure 6 shows a segment has
majority power located in the lower frequency band.

Figure 6: The Segment with Low Pitch Component

3.4 Annotation of Kinesics and Utterances

To assess learning behaviors, observational approaches are
increasingly being used in research, overcoming some short-
comings of traditional methods such as self-report surveys
or interviews [29]. In the observational approach, trained
observers annotate behavior using predefined categories and
their behavioral indications (BIs). The presence or absence
of a BI within prespecified time segments is systematically
recorded. Thus, changes in engagement can be traced over
time and subsequently linked to other BIs or events occur-
ring concurrently in that time segment (e.g. learning material
being introduced or a question being asked). For our study,
we developed three coding categories (Kinesics, Linguistic
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alignment, and Robot talk) to capture behavioral indicators
of collaborative engagement. Kinesics captured behavioral
engagement evident in children’s bodily movements and pos-
ture. Linguistic alignment captured whether a child’s speech
was a response to the speech by either the robot or the peer.
For these categories, we developed the following behavioral
indicators:

(1) Kinesics: eye contact, gaze orientation (looking at the
robot), body orientation (facing peer or robot), posture
(e.g. leaning forward), gestures or enactments of ideas
(e.g. representing a concept), and facial expressions
(e.g. smile).

(2) Alignment: responding to the robot’s question, extend-
ing or elaborating talks by the peer or the robot, initiat-
ing a talk related to the current topic. Self-talk and talk
or mumbling unrelated to prior robot/peer utterances
were not coded as linguistically aligned.

(3) Robot talk: whether the robot makes utterances to me-
diate children’s conversation.

Video recordings were segmented into 3-second periods.
These were synchronized with the segments of vocal sig-
nals, aligning the times of occurrence of that event in the
video and audio files.aligning the times of occurrence of that
event in the video and audio files. We coded video recordings
of pairs of children using the commercial software INTER-
ACT 1. Coders viewed a 3-second-long segment and recorded
whether a behavioral indicator was present in the segment
(1) or not (0). Initially, two student researchers and one senior
researcher coded 5-minute segments of randomly selected
videos independently using the behavioral indicators; inter-
rater reliability (using Cohen’s kappa) was computed. We
repeated this process until we obtained kappa values of above
.85, which are considered excellent agreements [30]. Dur-
ing this coding phase, we found more behavioral indicators
which were added to the category descriptions in a code
book. The student researchers then coded the remaining
video data; any coding discrepancies between these coders
were resolved in a series of consolidation meetings that in-
cluded the student coders and two senior researchers.
3.5 Calculating Mutual Information among Data

Sources

Four types of data (intensity, pitch, kinesics, and align-
ment) for each child were preprocessed as follows. First,
because manual annotation is more reliable to identify a
child, both intensity and pitch data were reassigned to each
child using on the annotated data. Next, intensity and pitch
for each child was set to 0 (silence) when the other child was
speaking. Finally, for instances where both children were

1http:\\www.mangold.dehttp:\\www.mangold.dehttp:\\www.mangold.dehttp:\\www.mangold.dehttp:\\www.mangold.dehttp:\\www.mangold.dehttp:\\www.mangold.dehttp:\\www.mangold.dehttp:\\www.mangold.dehttp:\\www.mangold.dehttp:\\www.mangold.dehttp:\\www.mangold.dehttp:\\www.mangold.dehttp:\\www.mangold.dehttp:\\www.mangold.dehttp:\\www.mangold.dehttp:\\www.mangold.de

speaking (average 25% of the time for two datasets), we ran-
domly re-assigned voice data to one or the other child.

To determine the extent towhich each of these data sources
agreed with each other for each child, we calculated mutual
information between each pair of sources. Specifically, mu-
tual information I (X (t),Y (t)) was computed for each pair
of data sources (e.g. intensity × alignment) over a moving
window of size w of the time series with a symbolic repre-
sentation of length m. Computing mutual information over
a moving window captures temporal agreement between the
time series.
The size of the moving window wand the symbol length

m were determined by computing mutual information over
a range of valuesw = {30, 60, 120, 180, 240, 300} seconds and
m = {2, 3, 4} and calculating the coefficient of variation (stan-
dard deviation/mean) [31] for each child in a sample dataset.
We obtained the smallest coefficient of variation with a value
of m = 3,w = 30 seconds, and this was selected for the
subsequent analyses. Finally, because mutual information
as calculated between two temporal segments was a rela-
tive quantity, we normalized it with the maximum mutual
information. The maximum mutual information for a tempo-
ral segment is simply the mutual information between the
temporal segment with itself. Therefore, for a given window
mutual information varied between 0 and 1, with 0 denoting
no dependence, and 1 denoting identical time series.
3.6 Synthesizing Engagement

Grounded in the theory of engagement, we observed en-
gagement in terms of the different modalities of linguistic
alignment as an indicator of cognitive engagement, kinesics
as an indicator of bodily engagement, and vocal cues as an
indicator of emotional engagement. Referring to the mutual
information values, we proposed the following formula to
compute engagement. The high mutual information between
Intensity and Pitch (i.e., high correlation I >.75) led us to use
an average of the two. Kinesics and linguistic alignment
showed little correlation so they were considered indepen-
dent. Engagement therefore is defined as the sum of bodily
engagement (Kinesics), cognitive engagement (Alignment),
and emotional engagement (the average of vocal Intensity
and Pitch). Denoting these values at a time t , by K(t), A(t),
I(t),and P(t), the engagement, E(t), is calculated as

E(t) = K(t) +A(t) +
I (t) + P(t)

2
(4)

We used this formula to compute engagement for each
child by sessions to answer research question 1, and used the
resulting engagement values to answer research questions 2,
3, and 4.
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4 RESULTS

4.1 R 1 on Child Engagement

Research question 1 asked about the development of each
child’s engagement as the sessions progress. Figure 7 shows
the regression lines for each child for all three sessions. Re-
gression was fitted to frequency data (blue dots in graph)
of the engagement value computed with the formula for 1-
minute intervals. Figure 7 shows clearly that engagement
has changed by children (A, B, C, D).

(a) (b)

(c) (d)

Figure 7: Regression Lines for Children A, B, C, and D for
Three Sessions (Y-axis: Engagement, X-axis: Time, and Dot-
ted Curve: Confidence Bounds)

Table 1 reports slope and fit of the Engagement regression
lines by triadic interaction sessions (S1, S2 and S3) and for all
sessions (S1-3). Fit varies for a child across sessions, clearly
presenting dynamic trends in children’s engagement session
by session over time.

Table 1: Slope (β) and Fit (R2) of Engagement Regression
Lines by Session and Child

S1 S2 S3 S1-3Child
β R2 β R2 β R2 β R2

A 1 0.6 0 0 0 0 0 0

B 0.2 0.3 0 0 0.4 0.4 0.2 0.3

C 0 0 -0.3 0 0.5 0.6 -0.2 0.1

D 0.3 0.2 -0.4 0 0 0 -0.2 0.1

Figure 8: Mean and Standard Deviation of Normalized Mu-
tual Information Between Data Sources for Each Child over
Multiple Sessions

4.2 RQ 2 on Relationship Among Multiple Data
Sources

Research question 2 asked, To what degree do three types
of multimodal data (alignment, kinesics, and vocal cues) con-
form with each other for the child? Figure 10 presents the
interactions among the data sources per child per session.We
noted that some datasets such as voice Intensity and Pitch
conformed highly with each other (I > .75 for all sessions)
than others such as Kinesics and Alignment (I < 0.1, for all
sessions). We also noted that Alignment conformed moder-
ately with both Pitch and Intensity (I > 0.6, for almost all
sessions), meaning that most of children’s talk was collabora-
tive, i.e. they responded to the robot or a peer, or elaborated
on what had been said by the other. We did not find large
variation between these values across sessions.
4.3 RQ 3 on Relationship Between Child

Engagement and Robot Mediation

Research question 3 asked, To what degree is the robot’s
mediation related to the child’s engagement? Frequencies
of Engagement values and robot talk per 1-minute interval
are shown for the children A and B in Figure 9, and for the
children C and D in Figure 10. Trends in a child’s Engage-
ment and the robot’s mediating talk over time moved along
with each other in the same direction, showing that their
interactions were reciprocal.

Table 2 presents the means and standard deviations of nor-
malized information-theoretic mutual information between
a child and the robot for each child in each session and all
three sessions. Correlations between child engagement and
robot talk ranged between 0.57 and 0.76, with little variation
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between sessions. There were no statistical differences in
this range.

Figure 9: Engagement of Child A (Blue) and Child B (Red),
and Robot Talk (Green)

Figure 10: Engagement of Child C (Blue) and Child D (Red),
and Robot Talk (Green)

Table 2: Means and SDs of Mutual Information between
Child Engagement and Robot Talk

Child Session All

1 2 3

A 0.7(0.23) 0.76(0.1) 0.62(0.3) 0.68(0.24)

B 0.68(0.22) 0.74(0.2) 0.57(0.26) 0.66(0.24)

C 0.67(0.22) 0.72(0.21) 0.63(0.28) 0.67(0.24)

D 0.63(0.25) 0.66(0.17) 0.57(0.3) 0.62(0.26)

4.4 RQ 4 on Engagement Relationship Between
Two Children Within a Pair

Research question 4 asked, To what degree does the en-
gagement relationship of two children within a pair evolve
over time? Figures 9 and 10 present trends of the engagement
relationship of two children within a group over time. Table
3 shows the means and standard deviations of normalized

mutual information between two children within a group.
Comparing engagement relationship by group, we found
that the group A & B showed a higher mutual engagement
relationship than the group C & D.

Table 3: Means and SDs of Mutual Information of Two Chil-
dren Within a Group

Child Session 1 Session 2 Session 3 All

A & B 0.67(0.12) 0.6(0.2) 0.62(0.2) 0.63(0.2)

C & D 0.54(0.2) 0.51(0.2) 0.48(0.28) 0.51(0.23)

5 DISCUSSION

5.1 The Compound Variable Engagement

In this study, we developed a preliminary model to com-
pute a compound variable of engagement as a function of
three multimodal indicators (utterances, kinesics, and vocal
cues) which represent cognitive, behavioral, and emotional
engagement. The resulting engagement values for each child
in a time series, enabled us to calculate the slope of fitted
regression lines, which provided quantitative evidence for
the child’s engagement in the robot-mediated collaborative
activities. The computed engagement variable also allowed
us to show overall trends of not only individual children, but
also groups, which enabled us to track the progression of
collaborative engagement over time. Applying our formula
to the data from four children revealed marked differences
in the progression of a child’s engagement overall.
Importantly, the resulting dynamic trends of collabora-

tive engagement were confirmed by qualitative observations.
The progression in collaborative engagement of child C and
child D (Figure 7), for example, showed that their engage-
ment was very high at the beginning compared to children
A and B. This means that children C and D started with high
levels of collaboration, and then their engagement settled
at a level similar to the other group. This can be explained
by a ceiling effect initially. From on-site observations, in
fact, we noticed that the interest of children C and D moved
from the task at hand to the robot itself. For example, as
the sessions progressed, children started asking the robot
personal off-task questions such as “are you a boy or a girl?”
Their speech digressed from the prescripted topics, reducing
the linguistic alignment value. In parallel to this digression,
our qualitative observations noted an increase in their com-
petition with each other for the robot’s attention, with a
consequent reduction in their collaboration. Utterances like
“The robot was talking to me!” increased in frequency. In
sum, the quantitative engagement values closely mirrored
our on-site observations.
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The flexibility afforded by mutual information allowed
comparisons between behaviors captured by different data
sources within and between individuals. The choice of sym-
bol length and window size was determined based on the
robustness of the measure on complete sessions. However, it
is also possible that mutual information may evolve during
a session and therefore an alternative measure of robustness,
one for example that agrees with human coding, should be
developed. We interpreted values of mutual information by
normalizing it with maximum expected values. An alterna-
tive strategy that can be explored in the future would involve
statistical comparisons with mutual information between
data sources which are known to be independent [32]. We
would, for example, expect that the mutual information be-
tween engagements of children from different sessions will
be significantly less than mutual information between en-
gagements of children in the same session.
5.2 Issues and Recommendations

Overall, the current work presents a volume of issues to be
pursued in subsequent research. First, our subsequent work
will refine the calculation of the compound Engagement.
The current formulation of the compound variable captures
that children express their engagement in one or another
modality (e.g. with their bodies or their talk), which is con-
sistent with what is known in the literature. However, we
also expect the correlations among the observed modalities,
which the current formula does not take into consideration.
It is likely that these modalities exist in complex relation-
ships that are not yet explained. The on-going analysis of
our full datasets will improve the formula by identifying
such relationships, which will be integrated into the refined
calculation of the compound variable.

Related, the compound formula is currently based on the
assumption that engagement is a linear function of all the
modalities. We suspect that the relationship of the modali-
ties could be nonlinear or linear with time-varying weights.
For example, our qualitative observations revealed that chil-
dren tended to demonstrate their engagement through body
movements and posture more than speech. There were many
instances where children would orient themselves towards
the robot in an effort to listen to its questions (even when
its voice was sufficiently loud). Or they would respond with
gaze and leaning towards the robot before verbally answer-
ing a question and sometimes not speaking because they
were shy. Then, kinesics may be assigned a higher weight;
this weight may itself vary when the expression of engage-
ment shifts to another modality (e.g. a child increasingly
talk more after a while). Identifying the precise form of the
function relating the modalities to the compound variable
Engagement requires high-volume behavioral data.

Once the function is determined, the external validation
of Engagement will be warranted, e.g., the qualitative equiv-
alents of compound engagement. In future work, the on-site
qualitative observations should be coded in a more detailed
and systematic manner, providing an independent measure
of engagement. Their coding categories could match the
components in the computation of compound engagement.
In the ASR community, researchers generally focus on

time and frequency features to recognize the speech signal
since they are directly related with the content of speech.
Little attention has been paid to timing, duration, pitch, and
intensity. These features however are more likely to be re-
lated to speaker’s engagement level. Also, vocal features
may vary greatly by individuals, but in our formulation, chil-
dren’s vocal intensity and pitch did not take this individual
difference into account. In the on-going analysis, we will use
the baseline vocal information of each child to calculate the
intensity and pitch of the child.

Lastly, continued developments in technology and analyt-
ical techniques could take over some of the current analytic
work on kinesics by human annotators. Recently developed
applications can detect and precisely describe body move-
ments and posture, including orientation n [33].
To conclude, collaborative engagement in learning, and

more broadly in any life experience, is increasingly being
recognized in social scientific literature. Being able to en-
gage with others in professional and social life may lead
to successful functioning of individuals and their sense of
well-being. Yet, there is a lack of understanding of robust
ways to examine this phenomenon due to its complex and
multimodal nature. The authors admit that the current work
is preliminary and presents many issues to be resolved in
subsequent research. Nonetheless, the work has potential
for broader impact beyond children’s engagement, extend-
ing to collaboration in the workplace and other social and
professional arenas.
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